December 4, 2023

Pet Life Today

Professional Pets Experts

Oxidative, biochemical and histopathological alterations in fishes from pesticide contaminated river Ganga, India

  • NGRBA. (2011). http://www.indiawaterportal.org/sites/indiawaterportal.org/files/NGRBAEnvironmental%20and%20Social%20AnalysisVolIMoEFTERI2011.pdf(lastaccessed,11.09.2012)(10) (PDF) Metal and pesticide pollution scenario in Ganga River system. Available from: https://www.researchgate.net/publication/263160587_Metal_and_pesticide_pollution_scenario_in_Ganga_River_system. Accessed on 29 Jan 2020.

  • Physician Quality Reporting System (PQRS). (2017). Government of India.

  • Dwivedi, S., Mishra, S. & Tripathi, R. D. Ganga water pollution: a potential health threat to inhabitants of Ganga basin. Environ. Int. 117, 327–338 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Takatori, S. et al. A rapid and easy multiresidue method for the determination of pesticide residues in vegetables, fruits, and cereals using liquid chromatography/tandem mass spectrometry. J. AOAC Int. 91(4), 871–883 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Singh, L., Choudhary, S. K. & Singh, P. K. Pesticide concentration in water and sediment of River Ganga at selected sites in middle Ganga plain. Int. J. Environ. Sci. 3(1), 260–274 (2012).

    CAS 

    Google Scholar
     

  • Shah, Z. U. & Parveen, S. Pesticides pollution and risk assessment of river Ganga: a review. Heliyon 7(8), e07726 (2021).

    Article 

    Google Scholar
     

  • Shah, Z.U., & Parveen, S. Pesticide residues in Rita rita and Cyprinus carpio from river Ganga, India, and assessment of human health risk. Toxicol. Rep. (2021)

  • Vasseur, P. & Cossu-Leguille, C. Biomarkers and community indices as complementary tools for environmental safety. Environ. Int. 28(8), 711–717 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Eggen, R. I., Behra, R., Burkhardt-Holm, P., Escher, B. I. & Schweigert, N. Peer reviewed: challenges in ecotoxicology. Environ. Sci. Technol. 38(3), 58A-64A (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Moore, M. N., Depledge, M. H., Readman, J. W. & Leonard, D. P. An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat. Res. Fund. Mol. Mech. Mutagen. 552(1–2), 247–268 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Miyata, H., Aozasa, O., Ohta, S., Chang, T. & Yasuda, Y. Estimated daily intakes of PCDDs, PCDFs and non-ortho coplanar PCBs via drinking water in Japan. Chemosphere 26(8), 1527–1536 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Reznick, A. Z., Witt, E., Matsumoto, M. & Packer, L. Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats. Biochem. Biophys. Res. Commun. 189(2), 801–806 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Ahmad, I., Pacheco, M. & Santos, M. A. Anguilla anguilla L. oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere 65(6), 952–962 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pandey, S. et al. Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by copper pre-exposure. Arch. Environ. Contam. Toxicol. 41, 345–352 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Sayeed, I. et al. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol. Environ. Saf. 56, 295 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Poleksic, V. et al. Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environ. Toxicol. Chem. 29, 515–521. https://doi.org/10.1002/etc.82 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Adam, M. A., Maftuch, M., Kilawati, Y. & Risjani, Y. The effect of cadmium exposure on the cytoskeleton and morphology of the gill chloride cells in juvenile mosquito fish (Gambusia affinis). Egy. J. Aquat. Res. 45, 337–343. https://doi.org/10.1016/j.ejar.2019.11.011 (2019).

    Article 

    Google Scholar
     

  • Javed, M., Ahmad, I., Usmani, N. & Ahmad, M. Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere 151, 210–219. https://doi.org/10.1016/j.chemosphere.2016.02.080 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shah, Z. U. & Parveen, S. A review on pesticides pollution in aquatic ecosystem and probable adverse effects on fish. Pollut. Res. 39(2), 309–321 (2020).

    CAS 

    Google Scholar
     

  • Dalzell, D. J. B. & Macfarlane, N. A. A. The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate. J. Fish. Biol. 55, 301–315 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Oliveira, C. A. et al. Histopathological evidence of inorganic mercury and methyl mercury toxicity in the Arctic charr (Salvelinusalpinus). Environ. Res. 90, 217–225 (2002).

    Article 

    Google Scholar
     

  • Thophon, S. et al. Histopathological alterations of white Seabass Latescalcarifer, in acute and subchronic cadmium exposure. Environ. Pollut. 121, 307–320 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Maurya, P. K. & Malik, D. S. Bioaccumulation of heavy metals in tissues of selected fish species from Ganga river, India, and risk assessment for human health. Hum. Ecol. Risk Assess. Int. J. 25(4), 905–923 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ahmad, G. & Srivastava, G. J. Histopathologic alterations in the liver and skin of a freshwater teleost, Heteropneustes fossilis (Bloch) exposed chronically to a sublethal concentration of methylene blue. Pak. J. Zool. 17(3), 239–246 (1985).

    CAS 

    Google Scholar
     

  • Dutta, H. M., Adhikari, S., Singh, N. K., Roy, P. K. & Munshi, J. S. D. Histopathological changes induced by malathion in the liver of a freshwater catfish, Heteropneustes fossilis (Bloch). Bull. Environ. Contam. Toxicol. 51(6), 895–900 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Ortiz, J. B., De Canales, M. L. G. & Sarasquete, C. Histopathological changes induced by lindane (gamma-HCH) in various organs of fishes. Sci. Mar. 67(1), 53–61 (2003).

    CAS 
    Article 

    Google Scholar
     

  • APHA–AWWA–WPCF, Standard Methods for the Examination of Water and Wastewater, twentieth edition, Washington, DC, (1998)

  • Claiborne, A. Catalase activity. In CRC Handbook of Methods for Oxygen Radical Research (ed. Greenwald, R. A.) 283–284 (CRC Press, 1985).


    Google Scholar
     

  • Marklund, S. & Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974).

    CAS 
    Article 

    Google Scholar
     

  • Habig, W. H., Pabst, M. J. & Jacoby, W. B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).

    CAS 
    Article 

    Google Scholar
     

  • Levine, R. L. et al. (49) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464–478 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Floor, E. & Wetzel, M. G. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J. Neurochem. 70(1), 268–275 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–295 (1951).

    CAS 
    Article 

    Google Scholar
     

  • Gray, P. The microtomist’s formulary and guide (The Blakiston Company Inc., 1954).

    Book 

    Google Scholar
     

  • Kavitha, P. & Rao, J. V. Oxidative stress and locomotor behaviour response as biomarkers for assessing recovery status of mosquito fish, Gambusia affinis after lethal effect of an organophosphate pesticide, monocrotophos. Pestic. Biochem. Physiol. 87(2), 182–188 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Khare, A., Chhawani, N. & Kumari, K. Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish. Biomarkers 24(7), 666–676 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Clasen, B. et al. Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci. Total Environ. 626, 737–743 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ballesteros, M. L., Wunderlin, D. A. & Bistoni, M. A. Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicol. Environ. Saf. 73, 199–205 (2009).

    Article 

    Google Scholar
     

  • Clasen, B. et al. Carbofuran promotes biochemical changes in carp exposed to rice field and laboratory conditions. Ecotoxicol. Environ. Saf. 101, 77–82 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Samanta, P., Pal, S., Mukerjee, A. K. & Ghosha, A. R. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes. Ecotoxicol. Environ. Saf. 107, 120–125 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Nwani, C. D. et al. Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int. J. Environ. Rese. Public Health 7(8), 3298–3312 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Stadtman, E. R. Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, ageing and neutrophil function. Trends Biochem. Sci. 11(1), 11–12 (1986).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X., Wang, H., Liang, X. and Roberts, M.S., 2017. Hepatic metabolism in liver health and disease. In: Liver Pathophysiology (pp. 391–400). Academic Press, New York.

  • Weber, A. A. et al. Effects of metal contamination on liver in two fish species from a highly impacted neotropical river: a case study of the Fundão dam, Brazil. Ecotoxicol. Environ. Saf. 190, 110165. https://doi.org/10.1016/j.ecoenv.2020.110165 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yasser, A. G. & Naser, M. D. Impact of pollutants on fish collected from different parts of Shatt Al-Arab river: a histopathological study. Environ. Monit. Assess. 181(1), 175–182 (2011).

    Article 

    Google Scholar
     

  • Pereira, B. F. et al. Morphological gill analysis of fish species Prochilodus lineatus after exposure to pollutants. J. Environ. Anal. Toxicol. 2, 1000130. https://doi.org/10.4172/2161-0525.1000130 (2012).

    Article 

    Google Scholar
     

  • Mohamed, F. Histopathological studies on some organs of Oreochromis niloticus, Tilapia zillii and Synodontis schall from El-Salam canal, Egypt. Egy. J. Aquat. Biol. Fish. 7(3), 99–138 (2003).

    Article 

    Google Scholar